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Abstract. This paper presents status results of a microprocessor verification project.
The authors verify a complete 32-bit RISC microprocessor including the floating
point unit and the control logic of the pipeline. The paper describes a formal def-
inition of a ”correct” microprocessor. This correctness criterion is proven for an
implementation using formal methods. All proofs are verified mechanically by
means of the theorem proving system PVS.

1 Introduction

Microprocessor design is an error-prone process. With increasing complexity of current
microprocessor designs, formal verification has become crucial. In order to achieve
completely verified designs, adjusting the design process itself plays an important role:
the more high-level information on the design is available, the faster the verification can
be done.

The authors re-designed a simple RISC processor, the DLX [1], with respect to
verifiability. The design includes the complete pipe control and forwarding logic. The
function units are fully featured including a floating point unit. They are not abstracted
by means of uninterpreted functions. The proofs for the glue logic, the ALU, and float-
ing point unit are verified using the theorem proving system PVS [2].

Related WorkRecent papers show the correctness of complex designs or schedulers
in theorem proving systems such as PVS. Hosabettu et al. [3] prove both safety and
liveness of Tomasulo’s algorithm using PVS. Swada and Hunt [4] provide an ACL2 [5]
proof of a complete design implementing a Tomasulo scheduler with reorder buffer.

Henzinger et al. [6] verify a simple pipelined processor using a model checker.
McMillan [7] partly automates the proof by refinement of Tomasulo’s algorithm pre-
sented in [8] with the help of compositional model checking. This technique is improved
in [9] by theorem proving methods to support an arbitrary register size and number of
function units.

There are many publications on the verification of (parts of) floating point units.
Bryant and his group verified different function units using model-checking [10–12].
Aagaard and Seger verified a multiplier using model-checking combined with theorem
proving [13]. Claesen et.al. and O’Leary et.al. have used theorem provers to verify
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an SRT integer divider [14], and an SRT integer square root circuit [15], respectively.
Russinoff has proven the correctness of the multiplication, division and square root
algorithms of the AMD K7 processor [16]. Most of the publications cited do not cover
denormal numbers.

Project StatusThe verification of the pipeline and forwarding logic has reached a high
level of automation. However, the process of verifying the function units is not auto-
mated at all. The fundamentals of the floating point mathematics are verified already.
The verification of the individual floating point circuits is work-in-progress.

2 The Specification Machine

2.1 Hardware Model

Both the specification design and the hardware are modeled asmathematical machine.
Mathematical machines are a common method to model the behavior of arbitrary mi-
croprocessor systems. For this paper, the definition of the mathematical machine from
[17] is used: a mathematical machine is a tripleM = (C; c0; Æ) which consists of the
following components:

– C is the set of all possible configurations ofM . An elementc of C is called con-
figuration or state of the machine.

– The initial configurationc0 2 C is a configuration ofM .
– The transition functionÆ : C ! C maps a configurationcT to its successorcT+1.

A sequencec0; c1; : : : of configurations is called computation ofM iff cT+1 = Æ(cT )
holds.

Notation Registers are used in both the specification and the implementation of a mi-
croprocessor. LetR = fR1; :::; Rng be a finite set of registers. Each registerR can
have a value within a finite domainW(R).

The configuration set consists of the domains of the registers:

C =W(R1)�W(R2)� :::�W(Rn)

The projection function'Ri
extracts the value of a registerRi from a configuration.

Let c be(a1; a2; :::; an).

'Ri
: C !W(Ri); 'Ri

(c) = ai

Let c = cT be part of a computation of a mathematical machine.RT is a shorthand
for 'R(cT ). Let c:R be a shorthand for the following projection onc:

c:R = 'R(c)

In analogy to that, letÆ:R be a shorthand for the following projection on a state
transition function:

Æ:R : C !W(R); Æ:R = 'R Æ Æ

A signals is defined as a mapping from the set of configurations into an arbitrary
domainW(s):

s : C !W(s)



2.2 DLX Architecture

Our design implements the DLX architecture. The DLX architecture [1] features a RISC
instruction set included both integer and floating point instructions. The integer core is
taken from [17] and extended by a floating point register file (FPR) and floating point
instructions as described in [18].

2.3 Correct IEEE Floating Point Arithmetic

Our primary goal is the verification of a complete processor. Thus, we formally verify
the correctness of a floating point unit (FPU). In the processor framework, the FPU is
a multi-cycle function unit, and can (almost) be seen as a black box. The FPU supports
the operations addition, subtraction, multiplication, division and square root. The FPU
handles normal and denormal numbers, special values, traps, and interrupts. This is
in contrast to most previous results, where denormal numbers, traps and interrupts are
disregarded.

The correctness criterions for the FPU are given by the IEEE standard 754 [19]. The
standard is informal which makes it unusable for the formal verification of the FPU.
One therefore has to formalize the IEEE standard; this formalization has to preserve the
notion of the standard. Inherently, one cannot prove the equivalence of the formal and
the informal specification. The formal specifications have to convince anybody of their
correctness. We will give the specification of the IEEE rounding modeto nearestas an
example. The three other rounding modesround up, rounddown, andto zeroare not
as complicated as the mode tonearest. Nevertheless, they are covered.

For this, we first have to introduce some notations, which are taken from [18]. In
contrast to [18], we spent reasonable effort on the definition of the rounding function
itself, since this simplifies the verification of the FPU (see section 3.5). Due to lack of
space, we omit the PVS specifications and proofs, which are available on request.

We abstract IEEE numbers, as they are defined in the standard, tofactorings. A
factoring is a triple(s; e; f) with sign bits 2 f0; 1g, exponente 2 Z, and significant
f 2 R; f � 0. The value of such a factoring is[s; e; f ] := (�1)s � 2e � f . We use
constantsemin; emax 2 Z as lower and upper bounds for the exponent, as they are
defined in the standard.

We call a factoring(s; e; f) normal, if e � emin andf 2 [1; 2); we call (s; e; f)
denormal, if e = emin, f 2 [0; 1), andf = 0 ) s = 0 holds. A factoring is called
an IEEE-factoring, if it is normal or denormal. Note thate � emin holds for IEEE-
factorings.

Lemma 1. Each numberx 2 R has a unique IEEE-factoring(s; e; f) with [s; e; f ] =
x.

Let � be the function which maps reals to IEEE-factorings. We call� the normalization
shift.

Let P be the precision as defined in the standard. The significantf is called repre-
sentable, iff is an integral multiple of2�P , i.e.,2P �f 2 N0 . We call an IEEE-factoring
(s; e; f) representable, if its significantf is representable, ande � emax holds.



We call an IEEE-factoring semi-representable, iff is representable. We call a real
x (semi-)representable, if�(x) is (semi-)representable.

Representable numbers exactly correspond to the representable numbers as defined
in the standard. In the following, we will only investigate semi-representable factorings.
In order to “round” semi-representable factorings to representable ones, one just has to
decide whether one has to round to infinity or not. This can basically be done by a
comparison ofe with emax.

We proceed with the definition of the rounding function. The standard defines the
rounding modeto nearestas follows:

... In this mode the representable value nearest to the infinitely precise result
[of any floating point operation] shall be delivered; if the two nearest repre-
sentable values are equally near, the one with its least significant bit zero shall
be delivered. ...

The correspondence between this specification and the following definitions is not ob-
vious. We will focus on this in the theorems below. We start with the definition of a
function which rounds realsx to integers [20]:

rint(x) :=

8>><
>>:

bxc if x� bxc < dxe � x
dxe if x� bxc > dxe � x
x if bxc = dxe
2 bdxe =2c otherwise

By scaling the input by2P , one rounds reals to rationals withP fractional bits:

rrat(x) := 2�P rint(x � 2
P ):

Let (s; e; f) be an IEEE-factoring, and letx := [s; e; f ] be its value. One defines the
IEEE rounding function for rounding modeto nearestas follows:

rne(x) := 2errat(x � 2
�e):

Now we have a definition relatively close to the hardware but far away from the
specification in the standard. On one hand, this enables simpler implementation and
verification of the rounder, as we will see in section 3.5. On the other hand, it is not
obvious that these definitions conform to the the IEEE standard. We give three theorems
which justify this claim.

Theorem 1. For any realx, rne(x) is semi-representable.

The next theorem states that the result of the rounding function indeed is a nearest
representable number.

Theorem 2. For any realx, and any semi-representable IEEE-factoring(s; e; f), it
holdsjx� [s; e; f ]j � jx� rne(x)j.

The third theorem states that a number with least significant bit zero is chosen in
case of a tie between the two nearest representable numbers. Thus, we first bound the
distance betweenx andrne(x). We then show that the significant is even if the maxi-
mum distance is reached.



Theorem 3. For any realx, it holds jx � rne(x)j � 1=2 � 2e�P . If jx � rne(x)j =
1=2 � 2e�P and(s; e; f) = �(rne), then2P � f is even.

We will give a theorem in section 3.5 which simplifies the verification of the round-
ing unit by decomposing it into smaller parts. This theorem will seem fairly obvious
just because we invested reasonable effort in the definition of the rounding function.
In contrast to our definition, the rounding result in [18] is defined as“a representable
numbery closest tox. If there are two such numbersy, one chooses the number with
even significant”. This coincides obviously with the IEEE standard. Nevertheless, it
is impractical to verify the rounder with this informal definition. The effort we have
spent on the definition of the rounding function pays off when verifying the hardware
implementation.

3 Implementing the Processor

3.1 Forwarding and Stalling Logic

The design uses a common five stage pipeline as presented in [1, 18]. The pipelined ma-
chine is generated by an automatic transformation from a sequential prepared machine
as described in [17].
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Fig. 1.The registers of an-stage pipeline. The functionsf0 to fn�1 represent the data paths.



Our design features a completestall engine[21, 18]. In contrast to the stall engine
presented in [18], it allows stalling all stages individually. The stall engine is taken
from [17] with small changes: a clock enable signal is no longer used. The full bits are
updated in every cycle instead (figure 1).

The transition function for the full bits is changed accordingly; the full bit of each
stage is set iff the stage is updated or stalled.

Æ:full:k(c) = uek�1(c) _ stallk(c)

The calculation of the signalsue andstall is not changed and taken from [17]. The
signaluek is the clock enable signal of the output registers of stagek: the registers are
updated iff the stage is full and not stalled:

uek = fullk ^ stallk

The generation of both the stall engine logic and the forwarding logic is done by a
program based on the algorithms described in [17]. Furthermore, the program generates
a correctness proof for both the forwarding and stalling logic, which is verified by the
theorem proving system PVS.

3.2 Data Consistency

In order to formalize the data consistency criterion, a scheduling functionsI(k; T ) is
defined which specifies the indexi of the instruction which is in the registers of stage
k at timeT [17]. LetRI denote the value of a register in the implementation andRS

denote the value of the same register in the specification machine.

Theorem 4. Let an instructioni be in the output registers of stagek at timeT . Then
the values in a specification registerR of stagek of the implementation machine match
those in the configuration of the specification machine after the execution of instruction
i:

sI(k; T ) = i =) RT
I = Ri

S

During cycle 0, all stages are in the initial configuration, which has index0:

8k : sI(k; 0) = 0

The scheduling function forT > 0 of the machine is taken from [17]:

sI(k; T ) =

8<
:

sI(k; T � 1) if uek(cT�1) = 0
sI(0; T � 1) + 1 if uek(cT�1) = 1 ^ k = 0
sI(k � 1; T � 1) if uek(cT�1) = 1 ^ k 6= 0

Theorem 4 relies on the following lemmas:

Lemma 2. If the update enable signal of a stage is active in cycleT , the value of the
scheduling function for that stage increases by one. If the update enable signal of a
stage is not active, the value does not change. ForT > 0:

sI(k; T ) =

�
sI(k; T � 1) if uek(cT�1) = 0

sI(k; T � 1) + 1 if uek(cT�1) = 1



Lemma 3. Given a cycleT , the values of the scheduling functions of two adjoining
stages are either equal or the value of the scheduling function of the later stage is
greater by one.

Lemma 4. The values are equal iff the full bit of the later stage is not set.

fullTk = 0, sI(k � 1; T ) = sI(k; T )

Negating both sides of the last equation and applying lemma 3 results in:

fullTk = 1, sI(k � 1; T ) = sI(k; T ) + 1

Proof The proof of the lemmas above depends on the stall engine. It is an invariant
proof by induction. Lemma 2 for cycleT is shown using lemma 4 for cycleT � 1.
Lemma 3 for cycleT is shown using lemma 2 in cycleT and lemma 4 in cycleT � 1.
Lemma 4 is shown using lemma 2 and 3 in cycleT .

Due to lack of space, only the induction step for lemma 2 is shown here: The claim
for the caseueT�1k = 0 holds by definition. LetueT�1k = 1 hold. For the casek = 0,
the claim follows from the definition ofsI . Fork > 0 andT > 1 the claim is shown
using lemma 4 for cycleT�1, which states that the claim is equivalent tofullT�1k = 1.
This is true because of the definition of theue signals.

Theorem 4 is then shown by induction onT : the claim is obvious for stagesk which
are not updated in a given cycle. If the stage is updated (i.e.,ueT�1k = 1), the correctness
of these values is argued by showing the correctness of the input values of the stage. An
example proof using the lemmas above for the instruction fetch stage is in [17].

3.3 Liveness

The liveness criterion is formalized as follows: for any given configurationciS of the
specification machine, we prove that the implementation machine calculates these val-
ues within a finite amount of time, i.e., there is a finiteT such thatsI(k; T ) = i holds.
The proof is made by showing that any active stall signal becomes de-active within a
finite amount of time. This is a proof by induction on the number of stages beginning
with the last stage.

3.4 Integer Unit

Our design features an integer unit (ALU). It supports addition, subtraction, shift and
compare operations, and bit-wise operations (AND, OR, XOR). The ALU is verified
completely with the theorem proving system PVS. This includes an arbitrary-sized carry
lookahead adder. However, the implementation and the proof for the carry lookahead
adder is included only in order to achieve completeness. In order to create hardware, a
pre-defined adder from the vendor library is used.
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3.5 Floating Point Unit

Figure 2 shows the top-level schematic of the FPU. The processor feeds packed IEEE
numbers [19]A andB into the FPU. The unpacker circuit converts these numbers into
the factoring format described in section 2.3. Depending on the operation, the operands
A0 andB0 are fed into one of the function units. The last stage rounds the result of
the operation to a representable and packed IEEE number, and places the result on the
result-bus of the processor.

The design is pipelined, i.e., the design includes registers which store intermediate
results. The division is carried out using the Newton-Raphson method. Thus, the func-
tion unit for multiplication and division contains loops to feed back intermediate results
for the next Newton-Raphson iteration.

Complete hardware schematics at the gate level can be found in [18]. We will focus
on the rounder. We demonstrate a part of the verification of the rounding unit exemplary.
We give a theorem which decomposes the rounding function into three simpler func-
tions which then serve as a basis for the implementation of the rounder. The three func-
tions are the normalization shift�, the significant roundrsig and the post-normalization
pn. Figure 3 shows a decomposition of the rounding hardware in corresponding sub-
circuits. The sub-circuit “ExpRd” rounds to infinity, if an overflow occurs. This part is
not yet formalized.

For realsx, �(x) was defined as the unique IEEE-factoring(s; e; f) with [s; e; f ] =
x in section 2.3.

Lemma 5. For any realx and(s; e; f) = �(x), it holds

1. s = 0 iff x � 0,
2. e = max(blog2(x)c ; emin), and
3. f = jxj=2e.



Lemma 6. For any factoring (not necessarily IEEE-factoring)(s; e; f)with (s0; e0; f 0) =
�([s; e; f ]), it holds

1. s0 = s,
2. e0 = max(e+ blog2(f)c ; emin), and
3. f 0 = f=2e

0
�e.

We assume that the input to the rounder is encoded as a factoring, but not necessarily
as an IEEE-factoring. The normalization shift can then be computed in hardware by a
leading zero counterto compute the logarithm off , a left/right shifterto computef 0,
and anadderto adjust the exponent.

For IEEE-factorings(s; e; f), we define the significant round

rsig(s; f) := jrrat((�1)
s � f)j

as the significant rounded toP fractional binary digits. The multiplication with the
sign is necessary since the rounding decision depends on the sign. In hardware, the
significant round is computed by the examination of the low-order bits of the significant.
This technique is calledsticky bit computation[18].

Lemma 7. For any IEEE-factoring(s; e; f), it holds

1. rsig(s; f) 2 [0; 1], if (s; e; f) is denormal,
2. rsig(s; f) 2 [1; 2], if (s; e; f) is normal.

The lemma is proven by unfolding the definitions, and applying the following lemma:

Lemma 8. For any integersa; b and any realx with a � x � b, it holdsa � bxc �
dxe � b.

In PVS, this lemma is proven automatically by the powerful proof-strategygrind .

Let (s; e; f) be an IEEE-factoring, and letf 0 := rsig(s; f). If the significant round
yields a significantf 0 = 2, the result has to be post-normalized; the significant is set to
1, and the exponent is incremented. This is accomplished by the functionpn:

pn(s; e; f) :=

�
(s; e; f 0) if f 0 6= 2
(s; e+ 1; 1) if f 0 = 2

:

The value of the factorings is obviously preserved by the functionpn. The function
is implemented by anincrementerfor the exponent and anmultiplexerfor the signifi-
cant.

Assume that the sub-circuits in figure 3 indeed compute the corresponding func-
tions. Then the correctness of the whole rounder follows from the next theorem:

Theorem 5. For any factoring(s; e; f) (not necessarily an IEEE-factoring), it holds

�(rne([s; e; f ])) = pn(�([s; e; f ])):

This theorem is proven by definition unfolding, the use of the lemmas above, and
some rules on exponentiation.

Theorem 5 decomposes the verification problem into smaller sub-problems such
that the sub-circuits from figure 3 can be verified separately. These sub-circuits are
further decomposed in [18].



4 Converting Mathematical Machines to Verilog HDL

The implementation above is specified as mathematical machine in the PVS language.
All proofs rely on this specification. This specification is converted into a synthesiz-
able subset of Verilog HDL [22]. This is done automatically by a program. A similar
approach is made in [23].

The program is limited to convert mathematical machines, i.e., it takes a configu-
ration set, an initial configuration, and a transition function as inputs. This tool is not
limited to in-order designs.

5 Future Work

We are in progress of extending the design with a mechanism for speculative execution
and precise interrupts. Furthermore, out-of-order execution capabilities are added by
means of a Tomasulo scheduler.

The mathematics of the floating point arithmetic have been verified completely. Our
future work is to verify the corresponding circuits.
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